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Roadmap Overview

Quantum Machine Learning (QML)

Technology classification: Process Information

« QML," which merges the high-speed data
processing capabilities of "quantum computing”
with "machine learning," is garnering attention
for the future.
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Quantum Machine Learning (QML) intertwines quantum computing and
machine learning, presenting a novel approach to handling computational
tasks and data processing. Quantum computers, utilizing quantum bits
(qubits), operate fundamentally differently from classical computers, which
use classical bits (Bit) that represent either "0" or "1". Qubits, on the other
hand, can represent both "0" and "1" simultaneously through a
phenomenon known as superposition. Various types of qubits, such as
"superconducting qubits" and "optical qubits," achieve superposition
differently, impacting the theory and apparatus used in calculations.
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ML FOMs and Technology Evolution

FOMs:

Computational Speedup
[FLOPS]

Learning Efficiency
(Loss Value) [%]

Model Accuracy [%]

Scalability
[data per seconds]

Versatility [N]
Generalization [%]

Resource Efficiency
[Value]

CAPEX [USD]

OPEX [USD]

Training compute (FLOPs)

[1] Machine learning needs more large scale data processing technology
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[1] Brian Wang, Three Eras of Machine Learning and Predicting the Future of Al, Next BIG Future, 2022
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Quantum ML era is coming?

[2] QC Evolution improves ML performance
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[2] Florian Meyer, ETH Zurich , On Realistically Achieving Quantum Advantage, Communications of the ACM , 2023
[3] Hsin-Yuan Huang, et al. Power of data in quantum machine learning, Power of data in quantum machine learning, nature communications 2021



Technology Strategy Statement

Our goal is to lead in integrating Quantum Computing with Artificial Intelligence and Machine Learning,
aiming for groundbreaking computational advances by 2035, utilizing quantum computers to tackle
complex Al/ML challenges beyond the scope of classical computing.

- » 1. Quantum Algorithm Development: Our focus is on crafting and
improving Al/ML-centric quantum algorithms, targeting quantum

By 2030: machine learning, optimization, and pattern recognition, to surpass

el ol achieve yansformative classical algorithms by 2030.

computational capabilities|

» 2. Quantum Hardware Advancement: In collaboration with

““““““ guantum tech leaders, we aim to enhance quantum hardware,
focusing on qubit coherence, error correction, and scalability, to
achieve a robust quantum computing platform for Al/ML by 2025.

By 2025:
scalable quantum computing
platform for Al/ML

» 3. Quantum-Al Hybrid Systems: Given the emerging state of
5y 2002 guantum computing, we're dedicated to developing hybrid
develop operational quantum-classical systems, serving as an interim solution for Al/ML
quantum-Al hybrid systems .
advancements and a step towards fully quantum solutions.



Key Publications & Patents for Basic Survey

» Quantum machine learning (QML) explores synergies between machine learning and quantum computing, focusing on how quantum
computing can advance intelligent data mining, despite facing development and application challenges.

» The evolution of quantum machine learning can be divided into two phases: initial model formulation from the mid-90s to 2007, and the
current phase emphasizing implementation. Key developments include early biologically inspired quantum neural networks and recent
advances like the release of Tensorflow Quantum in 2020, marking significant progress in the field.

[1] Genealogy of Quantum Machine Learning Publications [2] [3] Patents: Quantum computing machine learning module & Optimization
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[1] Leonardo Alchieri, et al. An introduction to quantum machine learning: from quantum logic to quantum deep learning, Quantum Machine Intelligence, 2021
[2] Quantum computing machine learning module, US10275721B2, Accenture Global, 2022

[3] Quantum assisted optimization, US11449760B2, Google, 2022



Alignment with Company Strategic Drivers

The 'Company' aims to launch a Quantum Machine Learning SaaS product, leveraging a mix of purchased and
custom-developed Quantum Computing hardware to power advanced algorithms for diverse B2B applications

Quantum Machine Learning (QML) System Stack with HW FOMs

END USERS
Companies, government agencies

APPLICATIONS
Machine learning, optimization, chemistry

CLOUD ACCESS
E.g., Amazon Braket

HARDWARE
Quantum computers and simulators

Company Strategic Drivers

FOM Description Equation Nominal Value

‘The fundamental unit of

computation for a quantum
Number of .

' computer. The more qubitsina | N/A 433 (and improving)

Qubits

quantum computer, the greater ts

processing power

The speed of the time taken by a
Quantum time taken by a quantum algorithm | Stable Qubits =~ * @

. v N: number of qubits
Speedof | relies on the number of qubits and 128
B Mgt Q: average quality of

computation | ts qualiy, usually efers stable | o5

qubits

A measure of the effective size

and error rate of a quantum i N
Quantum | computer It takes nto account | Volume = min(n, ) |
Volume both the number of qubits and the | 1= number of qubits

quality of the operations on those | 9= number of gates

qubits.
Cumntim | o a quanom | e ot | g
Error Rate ccuring during a of ©= Totatof operations b

operation.
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Item

Company 1QCAIML
Strategic Driver Target(s)
> 16 Qubit machine: This is a primary consideration for
To secure the highest fidelity computing evaluating the raw performance capability of our QC
platform to deploy our Quantum Machine ~ hardware
Learning algorithms for B2B customers > 99.9& Qubit fidelity: This is the more significant factor
when evaluating the efficiency of our QC hardware

To develop the best in class QML > 1% market share of machine learning Saa$S business: To
algorithms for our B2B customers to rely on secure enough revenue to capture a significant chunk of the
for their critical business needs nascent $1B QML market

To secure the most cost-stable hardware < 25% variability in cost of hardware acquisition: This is a
for our nascent SaaS business key consideration in proving out our B2B offering of QML

Alignment
RAG Status

Aligns

Aligns

At Risk

Does not Align



R&D Projects, Company Positioning vs. Competition with FOMs

» Various architectures (Superconducting, ion, photons, etc.) are being explored by vendors, focusing on qubits count, fidelity, and Quantum
Volume as key R&D metrics.”
» "Among these, Quantinuum's H1-1 aligns with our Strategic Driver requirements, standing out in a competitive field.

Correlation Map of Quantum Computer R&D Projects Positioning and Competitive Technology List

Physical Quantum
Quantum Error rate / Fidelity Qubits Volume  Release
Hardware Manufacturer %] [C] 0] Year
99.98 (1 qubit
Forte lonQ 98.5-99.3 (2 qubit)[23] 32 2022
99.5 (3-qubit gate)
Qe Maxwell M Squared Lasers 99.1 (4-qubit gate)[28] 400 2022
e 99.997 (1 qubit)
H2 Quantinuum 99.8 (2 qubit) 32 65536 2023
99.996 (1 qubit)
‘ Hi Quantinuum 99.8 (2 qubit) 20 524,288 2022
Eunc ] 99.996 (1 qubit)
H1-2 Quantinuum 99.7 (2 qubit) 12 4096 2022
Soprano Quantware 99.9 (single-qubit gates) 5 2021
—n S i E Contralto Quantware 99.9 (single-qubit gates) 25 2022
= — 96 (Single-qubit gates)
Agave Rigett 87 (Two-qubit gates) 8 2018
98.63 (Single-qubit gates)
Acom Rigetti 87.5 (Two-qubit gates) 19 2017
93.23 (Single-qubit gates)
Aspen-1 Rigett 90.84 (Two-qubit gates) 16 2018
2onis
010 99.88 (Single-qubit gates)
Aspen-4 Rigett 94.42 (Two-qubit gates) 13 2019
99.23 (Single-qubit gates)
Aspen-7 Rigett 95.2 (Two-qubit gates) 28 2019
s Zis 99.22 (Single-qubit gates)
Aspen-8 Rigett 94.34 (Two-qubit gates) 31 2020
E%"I 99.39 (Single-qubit gates)
. Aspen-9 Rigett 94.28 (Two-qubit gates) 32 2021
2016
LB A 99.37 (Single-qubit gates)

Aspen-10 Rigetti 94.66 (Two-qubit gates) 32 2021

99.8 (Single-qublt gates)

92.7 (Two-qubit gates CZ)

Aspen-11 Rigetti 91.0 (Two-qubit gates XY) 40 2021
Reference: Created the above correlation diagram in Open Al DALL-E 2 from a list of Circuit-based quantum 99.8 (Singlo-qubit gates)
processors <https://en.wikipedia.org/wiki/List_of_quantum_processors#Circuit-based_quantum_processors> Asponttt  |Ripett o Tt oo o) - B 2022

99.8 (Single-qubit gates)
913 (Two-qubit gates C2)
Aspen-M2  Rigett 90.0 (Two-qubit gates XY) 80 2022

99.9 (Single-qubit gates)
94.7 (Two-qubit gates CZ)
Aspen-M3  Rigett 95.1 (Two-qubit gates XY) 80 2022



Technical Model: Morphological Matrix and Sensitivity Analysis with FOMs

» Our selection of the H1-1 device, with its superior Quantum Volume, is based on a detailed morphological matrix comparison.
» Quantum Volume (QV), a balance of qubit count and error rate, is the primary metric for evaluating quantum computer performance.

Morphological Matrix

Variable Unit Description
n 1] Number of qubits in the machine
] [%] Error rate of qubits (sometimes expressed as fidelity=1-p)
Quantum Volume o A measure of the effective size and error rate of a quantum computer

Sensitivity Analysis
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*Where n is number of qubits, and p is the quantum error rate (FOMs)
*Taking a nominal design point of n=128 Qubits and p=5%;
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0.001
0.005
0.01
0.05
0.1
0.001
0.005
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0.1
0.001
0.005
0.01
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Quantum
Volume
@v)

1.84099E+19
1.82627E+19
1.80797E+19
1.66482E+19
1.49419E+19
3.39602E+38
3.36888E+38
3.33511E+38
3.07105E+38
2.75629E+38
1.15561E+77
1.14637E+77
1.13488E+77
1.04502E+77
9.37916E+76

-2 -p

dQvdn =
dQV/dn
5.54192E+18
5.49763E+18
5.44252E+18
5.0116E+18
4.49795E+18
1.0223E+38
1.01413E+38
1.00397E+38
9.24478E+37
8.29725E+37
3.47872E+76
3.45092E+76
3.41632E+76
3.14583E+76
2.82341E+76

1

dQydp =
dQyidp

-3.68566E+19

-3.6709E+19
-3.65246E+19
-3.50488E+19
-3.32041E+19
-6.79884E+38
-6.77162E+38
-6.73759E+38
-6.46536E+38
-6.12508E+38
-2.31353E+77
-2.30426E+77
-2.29268E+77
-2.20005E+77
-2.08426E+77

dQ
dn

dq

dp

Norm(dQVdn) Norm(dQVdp)

0.3010
0.3010
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0.3010
0.3010
0.3010
0.3010
0.3010
0.3010
0.3010
0.3010

© = 2.128689 x 10°°

-2.0020
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-2.0202
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-2.0020
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-2.0020
-2.0101
-2.0202
-2.1053
-2.2222

— 6.465364 x 10°°

Option
1(H2) 2 (H141) 3 (H1-2)
32 20 12
0.003-0.2 0.004-0.2 0.004-0.3
2M6 2M9 2M2

Normalized Technological Derivatives for Quantum Volume

QV-Normalized dQV/dp -2.0

QV-Normalized dQVidn
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Financial Model

» The Quantum Machine Learning market, while currently crowded and competitive, is expected to consolidate,
leaving a few dominant players with an estimated 34.8% market share by 2035.
» Our analysis projects these target companies to follow investment trends akin to today's ML giants, resulting in
a Net Present Value (NPV) of $32,211 million, as detailed in the following simulation results.
Comparable Companies Analysis

] | A

Competitors (figures in $ Fixed Assets Fixed Assets wc EBITDA -CapEx

thousands) Sales Sales of ML % ML Revenue Market Share (TACA) ISales wcC ISales EBITDA ISales - CapEx ISales R&D R&D/Sales
NVIDIA $26,974,000.00 20%  $5,394,800.00 3.41% $20,758,000.00 77.0% $24,494,000.00 90.8% $ 5,987,000.00 22.2% $ 10,946,000.00 40.6% $7,812,000.00 29%
IBM $61,171,000.00 5% $3,058,550.00 1.94% $97,755,000.00 159.8%  -$2,387,000.00 -3.9% $ 14,139,000.00 23.1% $ 72,893,000.00 119.2% $6,567,000.00 10.74%
Microsoft $211,915,000.00 5% $10,595,750.00 6.71% $362,421,000.00 171.0% $95,495,000.00 45.1% $102,384,000.00 48.3% $ 253,460,000.00 119.6% $27,195,000.00 12.83%
Google $297,132,000.00 15% $44,569,800.00 28.21% $220,401,000.00 74.2% $90,000.00 0.0% $ 93,365,000.00 31.4% $ 270,845,000.00 91.2% $43,581,000.00 14.67%

|Average $149,298,000.0 11.25% $15,904,725.0 10.07%  $175,333,750.0 120.49% $29,423,000.0 33.00% $53,968,750.0 31.26% $152,036,000.0 92.63% $21,288,750.0 16.80%

Source:Yahoo Finance (2023), Statista, macrotrends

Technical Value Analysis Assumption

gwnWORVEVEN R RN WD ST wN RN R wT v Our NPV stands at $32,211M, inclusive of a $26,986M Terminal Value in 2035.
o v el ™ v Market growth is projected at 30% until 2030, slowing to 20% through 2035 (Virtue Market Research).
o m e, Y We anticipate a steady 10% annual growth in sales.
s 5 5w e e e e e e e e v The discount rate is set at 10%, with R&D capital costs funded via equity and debt (r= E/(E+D)* re + D/(D+E)*rd)
pers M GIS W00 0ok e e e EERTEREEE v Cash Flow (CF) parameters are derived from Comparable Companies Analysis:
A S A S R 5 S S A v" CF =1-1xEBITDA + t x Depreciation — CapEx — Change in WC
A D e S V' CapExt = Fixed Assets t - Fixed Assets t-1 + Depreciation(t)
v WC = Inventory + Accounts Receivable — Accounts Payable
PRI 0SS A e e v' CF formula: Net of taxes, EBITDA, depreciation, capital expenditure, and working capital changes.
e R R A A i T R R A L A A v Capital Expenditure (CapEx) calculation reflects current fixed assets, previous year adjustments, and depreciation.

awe s sy mm e se) e e 141 205 sase) s s2) sl @7

R v L M Working Capital (WC) comprises inventory and receivables minus payables.

e Gew wew Gew o s eex  Gee s mow  we  mew e mew  wie v : : Sl : : A . .
R&D is conventionally a sunk cost but can be capitalized as an intangible asset for amortization over its useful life,
aligning expenses with the expected benefits
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